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ABSTRACT 

The following problem is considered. Let X and Y be Banach spaces. Are 
those operators from X to Y which attain their norm on the unit cell of X, 
norm dense in the space of all operators from X to Y? It is proved that this 
is always the case if X is reflexive. In general the answer is negative and it 
depends on some convexity and smoothness properties of the unit cells inX 
and Y. As an application a refinement of the Krein-Milman theorem and 
Mazur's theorem concerning the density of smooth points, in the case of 

weakly compact sets in a separable space, is obtained. 

1. Introduction. Let B(X, Y) be the Banach space of  all bounded linear 
operators  from the Banach space X into the Banach space Y. (The norm in B(X, Y) 
is the usual opera tor  norm.)  Let P(X, Y) be the subset of  B(X, Y) consisting of all 
the operators  which attain their norm on the unit cell of  X, that is all those T 

for which there is an x ~ X satisfying I! x II = 1 and I] Tx I1 = 11 T II. Bishop and 
Phelps [1] (cf. also [2]) proved that  if dim Y= 1 then P(X, Y) is norm dense in 
B(X, Y) for every Banach space X. In [1] they also raised the general quest ion--for  

which Banach spaces X and Y is P(X, Y) norm dense in B(X, Y)? This question 
is the subject of  the present note. 

Rather  simple examples show that in general P(X, Y) is not dense in B(X, Y). 
The simplest examples, perhaps, are based on the fact that  if a 1 - 1 opera tor  
T f r o m  X into a strictly convex space Yattains its norm at a point x, then x is an 

extreme point of  the unit cell of  X. However, if we consider instead of  P(X, Y) 
the larger set Po(X, Y), consisting of  all the operators  T such that T** attains 
its norm on the unit cell of  X**, then it can be shown (Theorem 1) that  this set is 
always norm dense in B(X, Y). 

The question of Bishop and Phelps, as it stands, is very general. In fact, it 
seems to be too general to have a reasonably complete solution. We therefore 

restrict ourselves here to the study of those spaces X which have either one of  the 
following properties. 

A. For  every Banach space Y, P(X, Y) is norm dense in B(X, Y). 
B. For  every Banach space Y, P(Y, X) is norm dense in B(Y, X). 

An immediate consequence of  the density of  Po(X, Y) in B(X, Y) is that  every 
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reflexive space has property A. In Theorem 2 we show that if a Banach space X 
has property A then, under certain circumstances (for example if it is separable), 
its unit cell must have many strongly exposed points(2). A dual result concerning 
property B and strongly smooth points is also given (Theorem 3). As a consequence 
of the results mentioned above we obtain (for weakly compact sets in a separable 
space) refinements of the Krein-Milman Theorem and Mazur's Theorem [10] 
concerning the density of smooth points (cf. Theorem 4). 

In section 3 we prove some results of a more special nature and discuss a few 
simple examples. It is shown in particular that a finite-dimensional space whose 
unit cell is a polyhedron has property A and that there are Banach spaces X such 
that P(X, X) is not norm dense in B(X, X). 

I am indebted to Professor R.R. Phelps for helpful conversations concerning 
the subject of this note. 

Notations. By "opera tor"  we always mean a bounded linear operator. Our 
results hold for real and for complex Banach spaces; however, for convenience of 
notation, we shall assume that the Banach spaces are real. The unit cell 
(x: xeX,[I x [I < 1} of X is denoted by Sx. Let C be a convex set in the Banach 
space X. A point x e C is called an exposed point of C if there is a n f e  X* such 
that f ( y )  < f ( x )  for every y # x in C. A point x ~ C is called a strongly exposed 
point of C if there is a n f E X *  such that (Of(Y) < f ( x )  for y # x in C; and (ii) 

X co  f(xn) ~ f (x )  and { ,},=1 c C imply H x, - x [1 ~ 0. The dual notions are those of 
a smooth and strongly smooth point. We shall use these notions only for the unit 
cell and so we define them only in this case. A point x with [1 x ][ = 1 is called a 
smooth point of Sx if there exists only one f ~ X *  satisfying f (x )= Ilfll = 1. 
A point x e  X with II x !I = 1 is called a strongly smooth point of Sx iff , (x)  ~ 1, 
and {f,}ff= 1 c Sx. imply that II • - f  11-' 0 (wheref is, necessarily, the unique element 
of  Sx. satisfying f (x)  = 1). A point x with II x I! = 1 is a smooth point (resp. 
strongly smooth point) of Sx if and only if the norm is Gateaux (resp. Fr6chet) 
differentiable at x (cf. ~mul'yan I-11]). A Banach space X is called strictly convex 
(resp. smooth) if every point on the boundary of Sx is an exposed (resp. smooth) 
point of Sx. X is called locally uniformly convex [9] if [1 x,, + x 2, 
and 11 xn !1 = II x II = I imply [1 x , -  x 11 ~ 0. If  X is locally uniformly convex then 
eveiy point on the boundary of S x is a strongly exposed point. If every point on 
the boundary of Sx is strongly smooth we say that the norm in X is Fr6chet 
differentiable (cf. Day [5, pp. 112-113] tbr these and related notions). 

2. The main results. We begin by giving a simple characterization of the 

set Po(X, Y). 

LEMMA 1. An operator T from X to Y belongs to Po(X, Y) if and only if 
S ~ y *  there are {XkIk= 1 in X and tfkIk=l in such that 

(2) This notion is defined below. 
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(1) II x k II = liT, II = 1 k = 1 , 2 ,  . . -  

(2) I f~(Tx,) l  ->- II z l l -  1/j j<=k, k = 1,2, ... 

Proof. Suppose (1) and (2) hold and let x** be any weak* limit point of the 
sequence {x,}~=l. Then, for every j, IT**x**¢fj) l>= II Tl l -  1/j and hence 
II T**x** II--II T** II- The proof  of  the converse is also immediate (using the 
weak* density of Sx in Sx..). 

THEOREM 1. For every X and Y, Po(X, Y) is norm dense in B(X, Y). Hence 
every reflexive space has property A. 

Proof. Let T~B(X,  Y) with II ~ii = 1 and an e with 0 < e  < l / 3  be given. 
We choose first a monotonically decreasing sequence {ek} of positive numbers 
such that 

(3) 2 ~  e : < e ,  2 e i<e~, e k < l / 1 0 k ,  k = l , 2 , . . .  
i=1  i = k + l  

T, ~ Qo We next choose inductively sequences { k)k = 1' {Xk}k = 1' and {fk}~°=l satisfying 

(4) T, = T 

(5) I1 TkXk II >-- II T, I I -  ~ ,  II x, II = 1 k = 1,2, ... 

(6) fk (Tkxk)-- 11 T~x~ I!, llA 11 = 1 k = 1,2, ..- 

TkX "[- ekf k( TkX ) " TkX k x G X ,  k =  1,2, . . .  

we verify that the following hold. 

k - I  

I IT j -T ,  11 _-< 2X~, ,  IIT, II----4/3 i < k ,  k=l,2,. .-  
i = j  

(7) Tt,+ ix = 

Having chosen these sequences 

(8) 

(9) 

(10) 

(11) 

11 ~+~ II ~ It r~ II + ~ II Y~ II ~ -  4e~ k = 1, 2, .-. 

II r~ll => II ~11 ~ 1  j < k ,  k = 1,2,. . .  

Ifj(rjxk)l >_- II r~ 1!- 68j j < k, k = 1,2,.. .  

Assertion (8) is easily proved by using induction on k. By (5), (6) and (7) 

II Tk+, II > II r ,+ ,~ ,  II = II Z~x,(1 + ~f~(T~,))II 

= II r,x, II(l + ~,ll T,,,, ll)-: (llr, II- ~,)(: + ~,11 r, li- ~,~). 
Relation (9) fo]lows easily from thi~ inequatity, since II T, II = 4/3 and ~, < 1/10k, 
while (10) is an immediate consequence of  (4) and (9). Finally we verify (11). 
By the triangle inequality, (5), (8), (10) and (3) we have, for j < k, 
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[1 Tj+~x k II = II Tkx~, 11- tl T k -  Tj+~ 11 >= 
k - !  

= I1 T~ II - ~ - 2 ~ ~, > II ~+~ II - 2 4  
i = j + l  

Hence, by (7) and (9), 

~IS~(T~x~) I I1% 11 + 11 r~ II :> II T~+ ~xk II = 

I1 T~ II + ~J II T~ 112 - &if, 
so that 

If~(Zjxk)l >_ 11 r~ II- 6~j, 

and this proves (11). 
The sequence Tk converges in norm to an operator T satisfying II ~ -  z II z 

and I1 ~ -  Tj !1 --< ~?-1 fo r . /=  2, 3,... (use (3) and (8)). We claim that ~ P o ( X ,  Y). 
Indeed, 

I f j t~x,)  I >: I f , (T~-x~)I-  II % -  ~ll->- 

> II ~11 - 6 ~ - 2 ~ f - ,  > II ~11 - ~/s, --- II r~ I1 - 6 ~ s -  z j _ ,  = = 

and the desired conclusion follows from Lemma 1. For reflexive X it is obvious 
that P(X, Y) = Po(X, Y) and thus every reflexive X has property A. 

Remark. The operator T constructed in the proof  of Theorem 1 has also the 
property that T -  T is compact. 

THEOREM 2. Let the Banach space X have property A. Then 
(i) I f  X is isomorphic to a strictly convex space, then Sx is the closed convex 

hull of its exposed points. 
(ii) I f  X is isomorphic to a locally uniformly convex space, then Sx is the 

closed convex hull of its strongly exposed points. 

Proof. The proofs of (i) and (ii) are almost identical so we prove here only (ii). 
Let C be the closed convex hull of the strongly exposed points of Sx. Suppose 
that C # S x .  Then there is an f ~ X *  with [[fl[ = 1  and a 6 > 0  such that 
I/(x~l < 1 - 6  for x~C.  Let III II1 be a locally uniformly convex norm in X 
which is equivalent to the given norm II II and such that I I Ix III --- II x II for 
every x. Let Ybe the space X @ R(3) with the norm II (x,r) !! = (111 x 1115+ re) "~. 
Then Y is locally uniformly convex. Let V be the operator from X into Y defined 
by Vx = (x, Mf(x)) where M > 2/~5. Then V is an isomorphism (into) and the 
same is true for every operator sufficiently close to I1. We have 

II vii ~ M; II Vx II z (1 + <M-  2)2) t/2 < M -  1 for x ~C. 

(3) R denotes the one-dimensional space. 
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It follows that operators sufficiently close to Vcannot attain their norm at a point 
belonging to C. To conclude the proof we have only to show that if Tis  an iso- 
morphism (into) which attains its norm at a point x and if the range of Tis locally 
uniformly convex, then x is a strongly exposed point of Sx. Indeed, let g ~ Y* 
satisfy [] g [1 = 1, g ( T x ) =  1[ T[]. Suppose that g(Tx,)--I] TI], with [Ix,, [] __< 1. 
Then [] Tx + Tx,  [] ~ 2 ][ T [] and hence, by our assumption on Y, ][ Tx - Tx,][ --* 0. 
Since T is an isomorphism, II x , -  x It "-" 0, and this concludes the proof of the 
theorem. 

For examples of X which satisfy the assumption in (i) cf. Day [3], [4]. Kadec 
[6] has proved that every separable Banach space is isomorphic to a locally 
uniformly convex space. 

We prove next a partial converse to Theorem 2(ii). We say that a family of 
points {x~} on the boundary of Sx is uniformly strongly exposed (u.s.e.) if there 
is a function ~$(e), with ~$(e) > 0 for every ~ > 0, and a set {f~} of elements of norm 1 
in X* such that for every ~, f~(x~) = 1, and tbr any x, 

II x II --- 1 and f:(x) _>_ 1 - 6(e) imply II x - x :  l! -- 

In a uniformly convex space the set of all the boundary points of the unit cell is 
u.s.e. The set of all the extreme points of the unit cell of ll is also u.s.e. 

PROPOSITION 1. Suppose S x is the closed convex hull of a set of uniformly 
strongly exposed points. Then X has property A. 

Proof. The proof is similar to that of Theorem I and we indicate here only 
the necessary modifications. Let {x:} be a set of u.s.e, points whose closed convex 
hull is Sx and let {f:} be the corresponding set in X* (appearing in the definition 
o fa  u.s.e, set). We choose the e; as in the proof of Theorem I and define a sequence 
of operators T k a s  follows. T1 = T and 

Tk+ lX = TkX + ekf~,,(x) " TkX~, k = 1,2, ... 

where x,k is an element of {x~} satisfying ]] Tkx,~ [1 -->_ [[ Tk 11- e~ 2, and f~k is the 
corresponding element of {f~}. As in the proof of Theorem 1 it can be shown 
that  the sequence Tk converges in the norm topology to an operator i~ satisfying 
1[ ~V_ T][ < e, and that ]f , j (x~) [ > 1 - 1/j  for i < k. By the definition of a 
u.s.e, set it follows that the sequence x,~ converges in the norm topology to a 
point x, say, and we have [[ iPx 1[ = 11 i? 1[. This concludes the proof. 

REMARK. There exist even finite-dimensional spaces whose unit cells cannot 
be obtained as the closed convex hull of a u.s.e, set. Indeed, in a finite-dimensional 
space the closure of a u.s.e, set is again u.s.e., and simple 2-dimensional examples 
show that in general a convex set cannot be obtained as the closed convex hull of a 
closed subset of its set of exposed points. 

Our next result is concerned with some smoothness properties. 
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THEOREM 3. Let X have property B. Then 

(i) I f  X is isomorphic to a quotient space of a smooth space then the smooth 
points of S x are norm dense in the boundary of S x. 

(ii) If  X is isomorphic to a quotient space of a space which has a Frdchet 
differentiable norm, then the strongly smooth points of Sx are norm dense in the 
boundary of Sx. 

Proof. Again the proofs of parts (i) and (ii) are almost identical so we prove 
only (ii). Let Z be a space whose norm is Fr6chet differentiable and let T o be an 
operator from Z onto X with HTo[I <1" Let Y be Z ~ R  with H(z,r)  ll 
= (H z ]I 2 + r2) 1/2. The norm in Yis also Fr6chet differentiable. Take Xo on the 
boundary of  Sx and define Te  B(Y,X)  by T(z, r) = Toz + rMxo, where M is a 
sufficiently large positive number. Let e > 0 be given and let i re  P(Y, X)  satisfy 
II ir - T I[ < 5. Since T* is an isomorphism into, the same is true for ~* ife  is small 
enough. Take Yo = (zo, ro)e Y with U Yo t{ = 1 and 1{ Tyo II = 11 ir 1t- We have 
Try o = Toz o + roMxo + u for some u of  norm < 5, and ]l iryo ]l > M - 5. Put 
xl =  yo/I] ~ l l  Since I[ Tozo II = 1 it follows easily that H X o -  xl [] = O(M-1) 
as M -~ oo (uniformly with respect to e in [0, 1])(3a). Hence to conclude the proof  
it is sufficient to prove that xt is a strongly smooth point of Sx. Take a n f e  X* 
with f ( x , ) =  [tSll = 1 and let f . ( x : ) ~  1 with lif. II <- 1. Put g =  t ' f / I I  iPil and 
gn = T * I J  11 f I]" Clearly g(Yo) = 11 g II = 1 and g,(Yo) ~ 1. Since the norm in Y is 
Fr6chet differentiable ][ g , -  g ]]-~0 and hence IIf -: ]1-,0 (~* is an isomor- 
phism). This concludes the proof. 

Our main reasons for stating and proving Theorem 3 are its obvious duality 
with Theorem 2 and the application of its proof  in Theorem 4b. In contrast to 
Theorem 2, Theorem 3 does not seem to be a useful criterion for deciding whether 
a given Banach space has property B. This is because the assumptions in (i) or (ii) 
here hold less frequently than the corresponding ones in Theorem 2 while the 
conclusion of  (i), for example, holds for every separable space (cf. Day [3] and 
Klee [8] for more details). It is even conceivable that statement (i) in Theorem 3 
holds in general, that is, without the assumption that X has property B. Concerning 
statement (ii) it should be remarked, perhaps, that if a Banach space X has a 
Fr6chet differentiable norm then the density character of  X* is the same as that 
of  X. This result was recently announced by Kadec [7] and it is a consequence 
of  the theorem of Bishop and Phelps. 

The results which we have already proved imply easily the following refinement 
of  the Krein-Milman theorem and the density theorem of Mazur [10] (cf. also 
Klee [81]). 

THEOREM 4. a. Every weakly compact convex set in a separable Banach 
space is the closed convex hull of its strongly exposed points. 

(3a) Here we assume that ro ~ 0. If ro < 0 we replace Yo by - y o .  
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b. The boundary of the unit cell of a separable reflexive space has a dense 
set of strongly smooth points. 

Proof. From Theorems 1 and 2 it follows immediately that the unit cell of a 
separable reflexive space is the closed convex hull of its strongly exposed points. 
The more general statement of (a) results from the observation that the method 
of proof of Theorem 1 yields the following statement: For everyX and Ythe set 
consisting of all the operators T which attain their supremum on a given weakly 
compact convex set C in X (that is, for which there exists an xo ~ C with 
I1 Txo 11 = supxoc I1 Zx II) is norm dense in B(X, Y). Theorem 2 c a n  also be 
modified in an obvious way so as to apply to operators which attain their 
supremum on a fixed C. 

Part (b) follows by observing that if X is reflexive and separable, we can take 
as Yin the proof of Theorem 3 a space isomorphic to X ~)R. Since Yis reflexive 
the density of P(Y,X) in B(Y,X) follows from Theorem 1 (and hence we do not 
use the assumption in Theorem 3 that X has property B). 

REMARK. There exist separable reflexive spaces whose unit cells have exposed 
points which are not strongly exposed. For example, let X be the space 12 and 
denote by S its unit cell in the usual norm. Let en= (1-1 /n ,O,  ... ,0,1,0,... ) 
for n = 2,3,.-. (the number I stands in the n-th place). Let Sz be the closed convex 
hull of Un°°=2 { + e,} U S. It is easy to see that the point (1, 0,0,...) is the only 
point in S~ whose first coordinate is 1 and hence it is an exposed point of $1. 
It is, however, not strongly exposed since the first coordinate of e~ tends to 1. 
It follows, by duality, that there are separable reflexive spaces whose unit ceils 
have smooth boundary points which are not strongly smooth. It should be 
remarked also that there exist separable (non-reflexive) Banach spaces whose 
unit cells do not have any strongly smooth boundary point (l~, for example). 

3. Some examples. Using known representation theorems for operators it is 
possible in some special cases to verify directly the density of P(X, Y)in B(X, Y). 
We shall now give a few results in which some of the common spaces are examined 
as to whether they have property A or B. The results are, however, very incom- 
plete. Even for the spaces C(K) we do not know a complete characterization of 
those which have either property A or B. Moreover, the examples given here do 
not answer some questions which naturally arise in connection with the results 
proved in section 2 (for example: Does every reflexive space have property B?). 

PROPOSITION 2. a. The space LI(#) has property A if and only if the measure It 
is purely atomic. 

b. The space C(K) with K compact metric has property A if and only if K 
is a finite set. 
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Proof. It is well known and easy to see that the extreme points of  the unit 

cell of  an LI(IX) space are the characteristic functions of the atoms of/x (multiplied 
by a suitable scalar so as to have norm 1). Hence the unit cell of  LI(IX ) is the closed 
convex hull of  its extreme points if and only if IX is purely atomic. Every L l space 
is isomorphic to a strictly convex space (Day [411). Hence, by Theorem 2(i), Li(IX) 
does not  have property A if/x is not purely atomic.That an l i(I ) space has property 
A for every index set I is very easily seen directly (it follows also from Propo- 

sition 1). 
To prove part (b) it is, by Theorem 2(ii), sufficient to show that if K is infinite 

compact Hausdorff, then the unit cell of C(K)  has no strongly exposed point. 
Suppose there were such a point x. Let # be the functional(4) appearing in the 

definition of a strongly exposed point and let e > 0. There exists a non-void open 
set G in K such that 0 ~< [IXI(G) < e/2. Since x is an extreme point of the unit cell 
of  C(K),[ x(k )  [ = 1 for every k E K. It is now easily seen that there is a y ~ C(K)  

such that [I Y [[ =< 1, [[ y - x [] = 2 and y(k )  = x (k )  for k ~ G. Clearly p(y) __> 1 - 
and this contradicts the definition of  a strongly exposed point. 

Our  next result is a consequence of  the theorem of  Bishop and Phelps [1]. 
It may be regarded as the dual of Proposition 1. 

PROPOSITION 3. Let  X be a Banach space such that there exist  two sets {x,} 

in X and {f,} in X*(5)  and 2 < 1 such that 

~. IIs: II = 1 f o r  every ~ and II x II = sup:lf:(x) l S°r every x ~ X .  

2. II x: II =f,(x=) = 1 f o r  every ~ and if:(x,) i < 2 f o r  ct ~ ft. 

Then  X has proper ty  B. 

Proof. Let T e B ( Y , X )  with 11 zll = 1 and ~, 0 < ~  < 1, be given. Clearly 

1 = II zll = sup, II Z*f= 11. Let ~o be such that [1T*f=o II = 1 - e(1 - ){)/4. Choose 
a g ~ Y* which attains its norm on Sr  and satisfies 

II g - T*f~o I1 <-- ~(1 - 2)/2,  1 - e(1 -- 2)74 < II g II z ~. 

Put 

We have 
Toy = T y  + [(1 + e)g(y) - T*f,o(Y)]X~o. 

II T -  To II--- ~ll g [i + II T * f ~  - g 11-- 2~. 

Further, T o ~ P ( Y , X ) .  Indeed, for ~ ~ s0, 

I[ z~f~ II ~ It zll  + IfXx,o)I@I! g [I + I[T*f~o - g II) < 

=< 1 + ;t(g + e(1 - 2 ) /2 )  =< 1 + e(1 + 2 ) /2 .  

(4) We identify the functional with the corresponding measure on K. 
(5) In both sets the set of indices {a) is the same. 
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while To*f~o = (1 + e)g satisfies 

II Zo*f~o II -- ( i  + ~)II ~ II >-- ( I  + ~ ) ( I  - e ( l  - )I.)/4) => 1 + e( l  + 2 ) / 2 .  

Hence II To* II--II To*f~o !l and since T*fao attains its norm on Sr  the same is 
true for To. 

The assumptions in Proposit ion 3 are satisfied if, tor example, X is finite- 
dimensional and its unit cell is a polyhedron or if X = C(K) with K having a 

dense set of  isolated points. 

Many examples of  spaces which do not have property B can be obtained by 

using Theorem 2. 

For example, if  X is strictly convex and if there is a Banach space Y such that  

S r is not  the closed convex hull of  its exposed points and such that Yis isomorphic 
to a proper subspace of X then X does not have property B. 

In some special cases it is easy to obtain somewhat stronger results. We have 

for example 

PROPOSITION 4. I f  X is strictly convex and if  there is a non-compact operator 
from Co into X then X does not have property B. 

Proof. Suppose Te  P(co, X) and let y~_ Co satisfy II Y II-- 1 and II Tr II = H z!l.  
Denote by {ei}~°°_- ~ the natural  basis of c o. There is an integer n such that  for i > n 

II Y + ei/  2 II = 1. It  follows that  for these i, [] Ty +Tei/  2 II ==- II T~ II and hence, 
by the strict convexity of  X, Te~ = 0 for i > n. Thus every operator  belonging to 

P(c o, X) has a finite-dimensional range and, as a consequence, every operator in 

the closure of  P(co, X) is compact.  
Finally we observe the following. 

PROPOSITION 5. There exist Banach spaces X for which P(X,X)  is not dense 
in B(X,X).  

Proof. Let Y =  c o with the usual norm and let Z be a strictly convex space 

isomorphic to c o. Put X = Y @ Z  with 1[ (y,z)II-- m a x (  II y II, II z [1)(6). x has 
the required property. Indeed, let T O be an isomorphism from Y onto Z with 

II To II ==- 1 and define T i n  B(X,X)  by T(y,z) = (0, Toy ). We have II Toy 11 >= 2~11Y II 
for every y e Yand some e > 0. Suppose there were a T~ B(X, X) with II t -  zl[ < 
and I1 5~ [t = [I T(yo ,zo) II for some (yo,Zo) in X of norm 1. Put T(yo, Zo)= (u,v). 

Clearly II u 11 <~  and since II t [I >~  it follows that  II u 11 < II t II -- Ilv II. Since 
S r has no extreme point  there is a y~ ¢ 0 in Y such that 

II y~ + y o II = I I -  y, + y o II ~ 1. 

(6) For every vector it will be clear to which space it belongs. Therefore we use the same 
notation, tl It, for the norms in X, Y and Z. 
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Hence 

II T(yo, Zo) + f'(Yx,O)[I -<- II f l l .  

Since Z is strictly convex and II v !1--II i l l  it follows that f ( y , , 0 ) =  (y2,0) for 
some y2~ Y. We get 

511 yl II > II z<yl,o)- t(y~,o)II-- II Toy, II > 2~11 y, II 
and this is a contradiction. 
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